Indian Statistical Institute, Bangalore Centre J.R.F. (I Year): 2016-2017 Semester I: Final Examination Analysis - I 07.11.2016 Time: 3 hours. Maximum Marks: 60 *Note:* Notation and terminology are understood to be as used in class. State clearly the results you are using in your answers. - 1. ($3 \times 5 = 15$ marks) Prove or disprove the following: - (i) Let $(\Omega, \mathcal{B}, \mu)$ be a σ -finite measure space. Let $A_n \in \mathcal{B}$, $n = 1, 2, \cdots$. Then $\mu(\limsup_{n \to \infty} A_n) = \limsup_{n \to \infty} \mu(A_n)$. (ii) Let f_n , $n=1,2,\cdots$, f be real valued Borel measurable functions on a σ -finite measure space (Ω,\mathcal{B},μ) . If $f_n\to f$, μ -a.e., then $f_n\to f$ in μ -measure. (iii) Let μ be a finite measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ such that $\mu \pi_1^{-1}$, $\mu \pi_2^{-1}$ are both absolutely continuous with respect to the Lebesgue measure on \mathbb{R} ; (here π_1, π_2 denote the coordinate projections on \mathbb{R}^2). Then μ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^2 . 2. (10 marks) For $\alpha > 0$, define $$\Gamma(\alpha) = \int_{(0,\infty)} x^{\alpha-1} e^{-x} dx,$$ where dx denotes integration w.r.t. the Lebesgue measure on \mathbb{R} . Show that $\alpha \mapsto \Gamma(\alpha)$ is continuous on $(0, \infty)$. 3. (15 marks) Let μ, ν be finite measures on a measurable space (Ω, \mathcal{B}) . Put $\lambda = \mu - \nu$; let $|\lambda|$ denote the total variation measure of λ . For any bounded Borel measurable function f on (Ω, \mathcal{B}) , show that $$|\int_{\Omega} f(\omega) d\lambda(\omega)| \leq \int_{\Omega} |f(\omega)| d|\lambda|(\omega)$$ $$\leq \int_{\Omega} |f(\omega)| d\mu(\omega) + \int_{\Omega} |f(\omega)| d\nu(\omega).$$ 4. (10 marks) Let $p, q \ge 1$ such that (1/p) + (1/q) = 1. Let μ denote the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $f \in L^p(\mu), g \in L^q(\mu)$. Show that $||f * g||_{\infty} \le ||f||_p ||g||_q$. 5. (10 marks) Let μ, ν be σ -finite measures on a measurable space (Ω, \mathcal{B}) such that $\mu \ll \nu$, $\nu \ll \mu$. Show that $(L^1(\mu))^* = (L^1(\nu))^*$. Is $L^1(\mu) = L^1(\nu)$?